定义:我们把椭圆的焦距与长轴的长度之比即,叫做椭圆的离心率.若两个椭圆的离心率
相同,称这两个椭圆相似.
(1)判断椭圆与椭圆
是否相似?并说明理由;
(2)若椭圆与椭圆
相似,求
的值;
(3)设动直线与(2)中的椭圆
交于
两点,试探究:在椭圆
上是否存在异于
的定点
,使得直线
的斜率之积为定值?若存在,求出定点
的坐标;若不存在,说明理由.
选修4-5:不等式选讲
已知函数.
(Ⅰ)当a=3时,求函数的最大值;
(Ⅱ)解关于x的不等式.
选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线的参数方程为
.在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
.
(Ⅰ)求圆C在直角坐标系中的方程;
(Ⅱ)若圆C与直线相切,求实数a的值.
选修4—1:几何证明选讲
如图,锐角△ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为内切圆I与边CA的切点.
(Ⅰ)求证:四点A,I,H,E共圆;
(Ⅱ)若∠C=,求∠IEH的度数.
设函数.
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)设函数求证:当
在△ABC中,顶点A,B
,动点D,E满足:①
;②
,③
共线.
(Ⅰ)求△ABC顶点C的轨迹方程;
(Ⅱ)若斜率为1直线与动点C的轨迹交与M,N两点,且
,求直线
的方程.