游客
题文

如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).
(1)求过O、B、A三点的抛物线的解析式.
(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标.
(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.

科目 数学   题型 解答题   难度 困难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

解方程组: 3 x + 1 2 y = 8 , 2 x - 1 2 y = 2 ·

如图,抛物线 y = a x 2 + bx + 4 x 轴于 A ( - 3 , 0 ) B ( 4 , 0 ) 两点,与 y 轴交于点 C ,连接 AC BC M 为线段 OB 上的一个动点,过点 M PM x 轴,交抛物线于点 P ,交 BC 于点 Q

(1)求抛物线的表达式;

(2)过点 P PN BC ,垂足为点 N .设 M 点的坐标为 M ( m , 0 ) ,请用含 m 的代数式表示线段 PN 的长,并求出当 m 为何值时 PN 有最大值,最大值是多少?

(3)试探究点 M 在运动过程中,是否存在这样的点 Q ,使得以 A C Q 为顶点的三角形是等腰三角形.若存在,请求出此时点 Q 的坐标;若不存在,请说明理由.

ΔABC 中, ACB = 90 ° CD 是中线, AC = BC ,一个以点 D 为顶点的 45 ° 角绕点 D 旋转,使角的两边分别与 AC BC 的延长线相交,交点分别为点 E F DF AC 交于点 M DE BC 交于点 N

(1)如图1,若 CE = CF ,求证: DE = DF

(2)如图2,在 EDF 绕点 D 旋转的过程中,试证明 C D 2 = CE · CF 恒成立;

(3)若 CD = 2 CF = 2 ,求 DN 的长.

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O 分别交 AC BC 于点 D E ,点 F AC 的延长线上,且 BAC = 2 CBF

(1)求证: BF O 的切线;

(2)若 O 的直径为4, CF = 6 ,求 tan CBF

如图,在平面直角坐标系中,一次函数 y = 1 2 x + 5 y = - 2 x 的图象相交于点 A ,反比例函数 y = k x 的图象经过点 A

(1)求反比例函数的表达式;

(2)设一次函数 y = 1 2 x + 5 的图象与反比例函数 y = k x 的图象的另一个交点为 B ,连接 OB ,求 ΔABO 的面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号