如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).
(1)求过O、B、A三点的抛物线的解析式.
(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标.
(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.
解方程组:
如图,抛物线 交 轴于 , 两点,与 轴交于点 ,连接 , . 为线段 上的一个动点,过点 作 轴,交抛物线于点 ,交 于点 .
(1)求抛物线的表达式;
(2)过点 作 ,垂足为点 .设 点的坐标为 ,请用含 的代数式表示线段 的长,并求出当 为何值时 有最大值,最大值是多少?
(3)试探究点 在运动过程中,是否存在这样的点 ,使得以 , , 为顶点的三角形是等腰三角形.若存在,请求出此时点 的坐标;若不存在,请说明理由.
在 中, , 是中线, ,一个以点 为顶点的 角绕点 旋转,使角的两边分别与 、 的延长线相交,交点分别为点 、 , 与 交于点 , 与 交于点 .
(1)如图1,若 ,求证: ;
(2)如图2,在 绕点 旋转的过程中,试证明 恒成立;
(3)若 , ,求 的长.
如图,在 中, ,以 为直径的 分别交 、 于点 、 ,点 在 的延长线上,且 .
(1)求证: 是 的切线;
(2)若 的直径为4, ,求 .
如图,在平面直角坐标系中,一次函数 和 的图象相交于点 ,反比例函数 的图象经过点 .
(1)求反比例函数的表达式;
(2)设一次函数 的图象与反比例函数 的图象的另一个交点为 ,连接 ,求 的面积.