如图,已知椭圆(a>b>0)的离心率
,过点A(0,-b)和B(a,0)的直线与原点的距离为
.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
(本小题满分16分)某商品的市场需求量(万件)、市场供应量
(万件)与市场价格x(元/件)分别近似的满足下列关系:
,
,当
时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量。
(1)求平衡价格和平衡需求量;
(2)若要使平衡需求量增加6万件,政府对每件商品应给予多少元补贴?
(3)求当每件商品征税6元时新的平衡价格?
(本小题满分14分)如图,在底面为平行四边形的四棱锥中,
,
平面
,且
,点
是
的中点.
求证:(1) 平面
;
(2)平面
(本小题满分14分)
(1)求经过两点(2,0) , (0,5) 的直线方程。
(2)直线L过点P(2,3),且与两坐标轴正半轴围成的三角形面积为12,求直线L的方程
(本小题满分14分)已知直线//直线
,直线
与
分别相交于点
, 求证:
三条直线共面.
已知函数。
(Ⅰ)当时,求函数
的值域;
(Ⅱ)若函数的最小值为
,求实数
的值;
(Ⅲ)若,求函数
的最大值。