游客
题文

在2014年巴西世界杯足球赛开幕之前,某校团支部为了解本校学生对世界杯足球赛的关注情况,随机调查了部分学生对足球运动的喜欢程度,绘制成如下的两幅不完整的统计图.

请你根据以上统计图提供的信息,回答下列问题:
(1)随机抽查了     名学生;
(2)补全图中的条形图;
(3)若全校共有500名学生,请你估计全校大约有多少名学生喜欢(含“较喜欢”和“很喜欢”)足球运动.

科目 数学   题型 解答题   难度 较易
知识点: 统计量的选择
登录免费查看答案和解析
相关试题

在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“ A 国学诵读”、“ B 演讲”、“ C 课本剧”、“ D 书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:

(1)如图,希望参加活动 C 20 % ,希望参加活动 B 15 % ,则被调查的总人数为  人,扇形统计图中,希望参加活动 D 所占圆心角为  度,根据题中信息补全条形统计图.

(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动 A 有多少人?

如图,已知 ΔABC 中, C = 90 ° ,点 M 从点 C 出发沿 CB 方向以 1 cm / s 的速度匀速运动,到达点 B 停止运动,在点 M 的运动过程中,过点 M 作直线 MN AC 于点 N ,且保持 NMC = 45 ° ,再过点 N AC 的垂线交 AB 于点 F ,连接 MF .将 ΔMNF 关于直线 NF 对称后得到 ΔENF ,已知 AC = 8 cm BC = 4 cm ,设点 M 运动时间为 t ( s ) ΔENF ΔANF 重叠部分的面积为 y ( c m 2 )

(1)在点 M 的运动过程中,能否使得四边形 MNEF 为正方形?如果能,求出相应的 t 值;如果不能,说明理由;

(2)求 y 关于 t 的函数解析式及相应 t 的取值范围;

(3)当 y 取最大值时,求 sin NEF 的值.

如图,已知抛物线 y = a x 2 + bx + c ( a 0 ) 的图象的顶点坐标是 ( 2 , 1 ) ,并且经过点 ( 4 , 2 ) ,直线 y = 1 2 x + 1 与抛物线交于 B D 两点,以 BD 为直径作圆,圆心为点 C ,圆 C 与直线 m 交于对称轴右侧的点 M ( t , 1 ) ,直线 m 上每一点的纵坐标都等于1.

(1)求抛物线的解析式;

(2)证明:圆 C x 轴相切;

(3)过点 B BE m ,垂足为 E ,再过点 D DF m ,垂足为 F ,求 BE : MF 的值.

如图,已知 AB 是圆 O 的直径,弦 CD AB ,垂足为 H ,与 AC 平行的圆 O 的一条切线交 CD 的延长线于点 M ,交 AB 的延长线于点 E ,切点为 F ,连接 AF CD 于点 N

(1)求证: CA = CN

(2)连接 DF ,若 cos DFA = 4 5 AN = 2 10 ,求圆 O 的直径的长度.

如图,设反比例函数的解析式为 y = 3 k x ( k > 0 )

(1)若该反比例函数与正比例函数 y = 2 x 的图象有一个交点的纵坐标为2,求 k 的值;

(2)若该反比例函数与过点 M ( 2 , 0 ) 的直线 l : y = kx + b 的图象交于 A B 两点,如图所示,当 ΔABO 的面积为 16 3 时,求直线 l 的解析式.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号