科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系,经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米,在海拔高度为2000米的地方,空气含氧量约为235克/立方米.
(1)求出y与x的函数表达式;
(2)已知某山的海拔高度为1400米,请你求出该山山顶处的空气含氧量约为多少?
如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.
(1)求证:BD平分∠ABC;
(2) 当∠ODB=30°时,求证:BC="OD."
如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(,
)、B(
,1)、C(0,
).
(1) 点B关于坐标原点O对称的点的坐标为__________;
(2) 将△ABC绕点C顺时针旋转,画出旋转后得到的△A1B1C;
(3) 求过点B1的反比例函数的解析式.
某渔船出海捕鱼,2010年平均每次捕鱼量为10吨,2012年平均每次捕鱼量为8.1吨,求2010年至2012年每年平均每次捕鱼量的年平均下降率.
解方程:
如图,在锐角三角形ABC中,BC=10,BC边上的高AM=6,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点的异侧作正方形DEFG.
(1)因为,所以△ADE∽△ABC.
(2)如图1,当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;
(3)设DE = x,△ABC与正方形DEFG重叠部分的面积为y.
①如图2,当正方形DEFG在△ABC的内部时,求关于
的函数关系式,写出x的取值范围;
②如图3,当正方形DEFG的一部分在△ABC的外部时,求关于
的函数关系式,写出x的取值范围;
③当x为何值时,y有最大值,最大值是多少?