(理科)已知椭圆的离心率
,连接椭圆的四个顶点得到的菱形的面积为4。
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点
,已知点
的坐标为(
),点
在线段
的垂直平分线上,且
,求
的值
(文科)设椭圆的左、右焦点分别为
,上顶点为
,在
轴负半轴上有一点
,满足
,且
.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若过三点的圆与直线
相切,求椭圆
的方程;
(Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为
的直线
与椭圆
交于
两点,线段
的中垂线与
轴相交于点
,求实数
的取值范围.
(理科)在平面直角坐标系中,点
为动点,
分别为椭圆
的左右焦点.已知△
为等腰三角形.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线与椭圆相交于
两点,
是直线
上的点,满足
,求点
的轨迹方程.
(文科)已知椭圆过点
和点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线
与椭圆
交于
两点,且
,求直线
的方程.[来
(文科)已知中心在原点的双曲线C的一个焦点是,一条渐近线的方程是
.
(Ⅰ)求双曲线C的方程;
(Ⅱ)若以为斜率的直线
与双曲线C相交于两个不同的点M,N,线段MN的垂直平分线与两坐标轴围成的三角形的面积为
,求
的取值范围.