如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).
(1)求m的值和一次函数的解析式;
(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;
(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.
如图,抛物线 与 轴交于 、 两点,与 轴交于点 ,直线 过 、 两点,连接 .
(1)求抛物线的解析式;
(2)求证: ;
(3)点 是抛物线上的一点,点 为抛物线上位于直线 上方的一点,过点 作 轴交直线 于点 ,点 为抛物线对称轴上一动点,当线段 的长度最大时,求 的最小值.
如图所示,直线 与双曲线 交于 、 两点,已知点 的纵坐标为 ,直线 与 轴交于点 ,与 轴交于点 , , .
(1)求直线 的解析式;
(2)若点 是第二象限内反比例函数图象上的一点, 的面积是 的面积的2倍,求点 的坐标;
(3)直接写出不等式 的解集.
“杂交水稻之父” 袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.
(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;
(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.
如图,以等边三角形 的 边为直径画圆,交 于点 , 于点 ,连接 ,且 .
(1)求证: 是 的切线;
(2)求线段 的长度.
为庆祝建党100周年,让同学们进一步了解中国科技的快速发展,东营市某中学九(1)班团支部组织了一次手抄报比赛.该班每位同学从 ."北斗卫星"; ." 时代"; ."东风快递"; ."智轨快运"四个主题中任选一个自己喜欢的主题.统计同学们所选主题的频数,绘制成不完整的统计图,请根据统计图中的信息解答下列问题:
(1)九(1)班共有 名学生;
(2)补全折线统计图;
(3) 所对应扇形圆心角的大小为 ;
(4)小明和小丽从 、 、 、 四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.