为了解“节约用水”活动开展一个月来的成效,某单位随机调查了20名职工家庭一个月来的节约用水情况,如下表所示:
节约水量(吨) |
0.5 |
1 |
1.5 |
2 |
职工数(人) |
10 |
5 |
4 |
1 |
请你根据上表提供的信息估计该单位100位职工的家庭一个月大约能节约用水多少吨?
.解分式方程:(1)
(2)
=
.
.
.计算:
(1)
(2)
分解因式:(1)
(2)
(3)
、(本题12分)如图,设抛物线C1:, C2:
,C1与C2的交点为A, B,点A的坐标是
,点B的横坐标是-2.
(1)求
的值及点B的坐标;
(2)点D在线段AB上,过D作x轴的垂线,垂足为点H,在DH的右侧作正三角形DHG.记过C2顶点M的直线为
,且
与x轴交于点N.
① 若过△DHG的顶点G,点D的坐标为(1, 2),求点N的横坐标;
② 若与△DHG的边DG相交,求点N的横坐标的取值范围.
、(本题10分)我们知道,对于二次函数y=a(x+m)2+k的图像,可由函数y=ax2的图像进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”。左右、上下平移的路径称为朋友路径,对应点之间的线段距离称为朋友距离。
由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”。
如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=.
(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向,再向下平移7单位,相应的朋友距离为。
(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离。
(3)探究三:为函数
和它的基本函数
,找到朋友路径,
并求相应的朋友距离。