如图,已知正方形ABCD的边长为10cm,点E在边AB上,且AE=4cm,
(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.
①若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由.
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为________cm/s时,在某一时刻也能够使△BPE与△CQP全等.
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD的四条边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在何处?
先化简,再求值:,其中
,
.
如图,AB⊥BE,DE⊥BE,垂足分别为B,E,点C,F在BE上,BF=EC,AC=DF.
求证:∠A=∠D.
计算
如图,中,AD⊥BC于点D,AD=BD,
=65°,求∠BAC的度数.
为了改善市民的生活环境,我市在某河滨空地处修建一个如图所示的休闲文化广场.在Rt△内修建矩形水池,使顶点、在斜边上,、分别在直角边、上;又分别以、、为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设地砖.其中,
.设
米,
米.
(1)求与
之间的函数解析式;
(2)当为何值时,矩形的面积最大?最大面积是多少?
(3)求两弯新月(图中阴影部分)的面积,并求当为何值时,矩形的面积等于两弯新月面积的
?