已知如图,抛物线与x轴相交于B(
,0)、C(
,0) (
均大于0)两点, 与y轴的正半轴相交于A点. 过A、B、C三点的⊙P与y轴相切于点A,其面积为 .
(1)请确定抛物线的解析式;
(2)M为y轴负半轴上的一个动点,直线MB交⊙P于点D.若△AOB与以A、B、D为顶点的三角形相似,求MB•MD的值.(先画出符合题意的示意图再求解).
设函数f(x)=ln x+x2-(a+1)x(a>0,a为常数).
(1)讨论f(x)的单调性;
(2)若a=1,证明:当x>1时,f(x)< x2-
-
.
(13分)某工厂某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x),当年产量不足80千件时,C(x)=x2+10x(万元);当年产量不小于80千件时,C(x)=51x+
-1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.
图1图2
(1)求证:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥BDEG的体积.
如图,在三棱柱ABCA1B1C1中,底面△ABC是等边三角形,D为AB中点.
(1)求证:BC1∥平面A1CD;
(2)若四边形BCC1B1是矩形,且CD⊥DA1,求证:三棱柱ABCA1B1C1是正三棱柱.
如图,在边长为4的菱形ABCD中,∠DAB=60°,点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O,沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(1)求证:BD⊥平面POA;
(2)记三棱锥PABD体积为V1,四棱锥PBDEF体积为V2,且,求此时线段PO的长.