设函数、
,且f(x)存在两个极值点
、
,其中
.
(Ⅰ)求实数的取值范围;
(Ⅱ)求的最小值;
(Ⅲ)证明不等式:.
(本小题共13分)
已知函数(
)的最小正周期为
.
(Ⅰ)求的值;
(Ⅱ)求函数在区间
上的取值范围.
设函数
.
(Ⅰ)求
的单调区间和极值;
(Ⅱ)是否存在实数
,使得关于
的不等式
的解集为(0,+
)?若存在,求
的取值范围;若不存在,试说明理由.
在数列
,
中,
,且
成等差数列,
成等比数列(
)
(Ⅰ)求
及
,由此猜测
,
的通项公式,并证明你的结论;
(Ⅱ)证明:
.
在直角坐标系
中,点
到两点
的距离之和等于4,设点
的轨迹为
,直线
与
交于
两点.
(Ⅰ)写出
的方程;
(Ⅱ)若
,求
的值;
(Ⅲ)若点
在第一象限,证明:当
时,恒有
.
如图,在棱长为1的正方体
中,
,截面
,截面
.
(Ⅰ)证明:平面
和平面
互相垂直;
(Ⅱ)证明:截面
和截面
面积之和是定值,
并求出这个值;
(Ⅲ)若
与平面
所成的角为
,求
与平
面
所成角的正弦值.