如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A,B,直线CD与x轴、y轴分别交于点C,D,AB与CD相交于点E,线段OA,OC的长是一元二次方程x2﹣18x+72=0的两根(OA>OC),BE=5,tan∠ABO=.
(1)求点A,C的坐标;
(2)若反比例函数y=的图象经过点E,求k的值;
(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.
(本题6分) 如图,在△ABC中,∠ACB=90,AC=BC.直线L经过点C且绕点C转动,分别过点A、B向直线DE引垂线,垂足分别为点D、E.
求证:AD+BE=DE.
(本题6分)如图,点E、C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F,那么△ABC与△DEF全等吗?为什么?
(本题6分)下列图形是否是轴对称图形,画出轴对称图形的所有对称轴.
思考:正三角形有_______条对称轴;正四边形有______条对称轴;正五边形有_______条对称轴;正六边形有_______条对称轴;正n边形有_______条对称轴.
当n越来越大时,正多边形接近于什么图形?它有多少条对称轴?
(本题6分)你能把如图①所示的长方形分成2个全等图形吗?把如图②所示的三角形分成3个全等三角形吗?把如图③所示的长方形分成4个全等三角形吗?
(本题3分)如图,在网格纸上,画出所给图形关于直线l对称的图形.