在“玉龙”自行车队的一次训练中,1号队员以高于其他队员10千米/时的速度独自前行,匀速行进一段时间后,又返回队伍,在往返过程中速度保持不变.设分开后行进的时间为(时),1号队员和其他队员行进的路程分别为
(千米),并且
与
的函数关系如图所示:
(1)1号队员折返点的坐标为 ,如果1号队员与其他队员经过t小时相遇,那么点
的坐标为 ;(用含t的代数式表示)
(2)求1号队员与其他队员经过几小时相遇?
(3)在什么时间内,1号队员与其他队员之间的距离大于2千米?
如图所示,在△ABC中:
(1)画出BC边上的高AD和中线AE.
(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.
已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M。请探究:
(1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论。
(2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;
(3)如图(3),当点E在CA的延长线上,点D在线段AB上(点D不与A,B重合),DE所在直线与直线BC交于点M,若CE=2BD,请直接写出线段MD与线段ME的数量关系。
如图,折叠长方形(四个角都是直角,对边相等)的一边AD使点D落在BC边的点F处,已知AB = 8cm,BC =" 10" cm,求EC的长
已知,如图,∠ABC=∠ADC=90°,M,N分别是AC,BD的中点。
求证:①BM=DM②MN⊥BD.
已知:如图,AD=4,CD=3,∠ADC=90°,AB=13,∠ACB=90°,求图形中阴影部分的面积.