如图,抛物线交
轴于点
,交
轴于点
,已知经过点
的直线的表达式为
.
(1)求抛物线的函数表达式及其顶点的坐标;
(2)如图①,点是线段
上的一个动点,其中
,作直线
轴,交直线
于
,交抛物线于
,作
∥
轴,交直线
于点
,四边形
为矩形.设矩形
的周长为
,写出
与
的函数关系式,并求
为何值时周长
最大;
(3)如图②,在抛物线的对称轴上是否存在点,使点
构成的三角形是以
为腰的等腰三角形.若存在,直接写出所有符合条件的点
的坐标;若不存在,请说明理由.
图① 图②
先化简,再求值:,其中
是不等式
的最大整数解。
已知在△中,∠
=30°,
,
,求△
的周长. (结果保留根号)
如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,求线段DF的长.
已知函数y ="(2m+1)" x+ m-3
(1) 若函数图象经过原点,求m的值
(2) 若函数图象在y轴的交点的纵坐标为-2,求m的值
(3)若函数的图象平行直线y=3x–3,求m的值
(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
暑假的一天,小刚到离家1.2千米的万州体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有24分钟,于是他立即步行(匀速)回家取票,在家取票用时5分钟,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小刚骑自行车从家赶往体育馆比从体育馆步行回家所用时间少10分钟,骑自行车的速度是步行速度的3倍.
(1)小刚步行的速度(单位:米/分钟)是多少?
(2)小刚能否在球赛开始前赶到体育馆?请通过计算说明理由.