“初中生骑电动 车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了的统计图,请回答下列问题:
(1)这次抽查的家长总人数是多少?
(2)请补全条形统计图和扇形统计图;
(3)从这次接受调查的学生中,随机抽查一个学生,则抽到持哪一类态度学生的可能性大?
(1)
(2)
(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D;
(2)阅读下面的内容,并解决后面的问题:
如图2,AP、CP分别平分∠BAD、∠BCD,
若∠ABC=36°,∠ADC=16°,求∠P的度数;
解:∵AP、CP分别平分∠BAD、∠BCD∴∠1=∠2,∠3=∠4,
由(1)的结论得:,
①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D.
∴∠P=(∠B+∠D)=26°.
① 如图3, 直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,求∠P的度数;
② 在图4中,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.
③ 在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.(本题8分)
随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A、B两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:
有两种配货方式(整箱配货)
方案一:甲乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱;
方案二:按照甲乙两店盈利相同配货,其中A种水果甲店箱,乙店箱,B种水果甲店箱,乙店箱
(1)如果按照方案一配货,请你计算出经销商能盈利多少元;
(2)请你将方案二填写完整(只写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多.(本题6分)
先阅读理解下面的例题,再按要求解答下列问题:
例题:解一元二次不等式
解:∵
∴可化为
;
由有理数的乘法法则“两数相乘,同号得正”,得①或②
;
解不等式组①,得,解不等式组②,得
,
∴的解集为
或
,即一元二次不等式
的解集为
或
;
(1)一元二次不等式的解集为;
(2)分式不等式的解集为;
(3)解一元二次不等式;
(本题6分)若方程组的解是一对正数,则:
(1)求m的取值范围;
(2)化简: