如图,在直角坐标系中,圆
与
轴负半轴交于点
,过点
的直线
,
分别与圆
交于
,
两点.
(1)若,
,求△
的面积;
(2)过点作圆O的两条切线,切点分别为E,F,求
;
(3)若,求证:直线
过定点.
已知f(x)=|2x﹣1|﹣|x+1|.
(Ⅰ)求f(x)>x解集;
(Ⅱ)若a+b=1,对∀a,b∈(0,+∞),+
≥|2x﹣1|﹣|x+1|恒成立,求x的取值范围.
已知在直角坐标系xOy中,直线l的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρcosθ+3=0.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设点P是曲线C上的一个动点,求它到直线l的距离d的取值范围.
如图,AB是的⊙O直径,CB与⊙O相切于B,E为线段CB上一点,连接AC、AE分别交⊙O于D、G两点,连接DG交CB于点F.
(Ⅰ)求证:C、D、G、E四点共圆.
(Ⅱ)若F为EB的三等分点且靠近E,EG=1,GA=3,求线段CE的长.
已知f(x)=.
(1)求f(x)的单调区间;
(2)令g(x)=ax2﹣2lnx,则g(x)=1时有两个不同的根,求a的取值范围;
(3)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)﹣f(x2)|≥k|lnx1﹣lnx2|成立,求k的取值范围.
已知椭圆C:+
=1(a>b>0)的下顶点为P(0,﹣1),P到焦点的距离为
.
(Ⅰ)设Q是椭圆上的动点,求|PQ|的最大值;
(Ⅱ)若直线l与圆O:x2+y2=1相切,并与椭圆C交于不同的两点A、B.当•
=λ,且满足
≤λ≤
时,求△AOB面积S的取值范围.