已知椭圆C:+
=1(a>b>0)的下顶点为P(0,﹣1),P到焦点的距离为
.
(Ⅰ)设Q是椭圆上的动点,求|PQ|的最大值;
(Ⅱ)若直线l与圆O:x2+y2=1相切,并与椭圆C交于不同的两点A、B.当•
=λ,且满足
≤λ≤
时,求△AOB面积S的取值范围.
已知函数(
).
(1)求函数的单调区间;
(2)请问,是否存在实数使
上恒成立?若存在,请求实数
的值;若不存在,请说明理由.
已知A=,B=
,C=
(1)试分别比较A与B、B与C的大小(只要写出结果,不要求证明过程);
(2)根据(1)的比较结果,请推测出与
(
)的大小,并加以证明.
已知函数.
(1)求的极值(用含
的式子表示);
(2)若的图象与
轴有3个不同交点,求
的取值范围.
为调查某市老年人是否需要志愿者提供帮助,用简单随机抽样方法从该市调查了500位老年人,结果如右表.
性别 是否需要志愿者 |
男 |
女 |
需要 |
40 |
30 |
不需要 |
160 |
270 |
(1)估计该市老年人中, 需要志愿者提供帮助的老年人的比例;
(2)能否有99%的把握认为该市的老年人是否需要志愿者提供帮助与性别有关?
附:(
)
![]() |
0.050 |
0.010 |
0.001 |
![]() |
3.841 |
6.635 |
10.828 |
已知复数,
.
(1)若为纯虚数,求实数
的值;
(2)当=1时,若
,请问复数
在复平面内对应的点在第几象限?