我市某校某数学老师这学期分别用两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名的数学期末考试成绩,分别为
甲班:.
乙班:.
(Ⅰ)作出甲乙两班分别抽取的20名学生数学期末成绩的茎叶图,依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率.
如图,在三棱锥中,
平面
,
,
为侧棱
上一点,它的正(主)视图和侧(左)视图如图所示.
(1)证明:平面
;
(2)在的平分线上确定一点
,使得
平面
,并求此时
的长.
某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔小时抽一包产品,称其重量(单位:克)是否合格,分别记录抽查数据,获得重量数据的茎叶图如图所示.
(1)根据样品数据,计算甲、乙两个车间产品重量的平均值与方差,并说明哪个车间的产品的重量相对较稳定;
(2)若从乙车间件样品中随机抽取两件,求所抽取的两件样品的重量之差不超过
克的概率.
在平面直角坐标系中,以
为始边,角
的终边与单位圆
的交点
在第一象限,已知
.
(1)若,求
的值;
(2)若点横坐标为
,求
.
已知函数,
.
(1)若,是否存在
、
,使
为偶函数,如果存在,请举例并证明你的结论,如果不存在,请说明理由;
(2)若,
,求
在
上的单调区间;
(3)已知,
对
,,有
成立,求
的取值范围.
已知数列,
,
,
,
,
为数列
的前
项和,
为数列
的前
项和.
(1)求数列的通项公式;
(2)求数列的前
项和
;
(3)求证:.