游客
题文

某养殖场需要甲、乙两种饲料的混合物,甲中每两含蛋白质10克,脂肪0.5克和碳水化合物10克;乙中为5克、1克和10克,又甲、乙两种饲料价格分别为5分/两和4分/两,而要求甲、乙两种饲料混合后每份至少含蛋白质100克,脂肪10克和碳水化合物180克,问每份混合饲料中用甲、乙两种饲料各多少两,才能使成本最低?

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

设函数.
(1)求的值域;
(2)记的内角的对边长分别为,若,求的值.

已知函数R),为其导函数,且有极小值
(1)求的单调递减区间;
(2)若,当时,对于任意x,的值至少有一个是正数,求实数m的取值范围;
(3)若不等式为正整数)对任意正实数恒成立,求的最大值.

如果数列满足:,则称数列阶“归化数列”.
(1)若某4阶“归化数列”是等比数列,写出该数列的各项;
(2)若某11阶“归化数列”是等差数列,求该数列的通项公式;
(3)若为n阶“归化数列”,求证:

在平面直角坐标系中,已知椭圆的焦点在轴上,离心率为,且经过点
(1)求椭圆的标准方程;
(2) 以椭圆的长轴为直径作圆,设为圆上不在坐标轴上的任意一点,轴上一点,过圆心作直线的垂线交椭圆右准线于点.问:直线能否与圆总相切,如果能,求出点的坐标;如果不能,说明理由.

某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中,且中,,经测量得到.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点作一直线交,从而得到五边形的市民健身广场,设
(1)将五边形的面积表示为的函数;
(2)当为何值时,市民健身广场的面积最大?并求出最大面积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号