游客
题文

如图,三棱柱ABC-A1B1C1中,M,N分别为AB,B1C1的中点.
(1)求证:MN∥平面AA1C1C;
(2)若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求证:AB^平面CMN.

科目 数学   题型 解答题   难度 较易
知识点: 空间向量的应用 平行线法
登录免费查看答案和解析
相关试题

中,内角所对的边分别为,且
(Ⅰ)求角的值;
(Ⅱ)若点中角的外角内的一点,且,过点,垂足分别为.求的最大值.

(本小题满分10分)选修4—5:不等式选讲
(Ⅰ)若,,均为正数,且.证明:
(Ⅱ)设,且时,,求实数的取值范围.

选修4—4坐标系与参数方程
在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,曲线D的参数方程为为参数).
(Ⅰ)把C的极坐标方程化为直角坐标方程;
(Ⅱ)判定曲线C与曲线D间的位置关系.

选修4—1几何证明选讲
已知P是圆O外一点,PE切圆O于点E,A是圆O上一点,PA交圆O于B点,C为AE一点,PC交BE与D,CE=DE.

(Ⅰ)求证:PC是的平分线
(Ⅱ)

(本小题满分12分)某校高三有800名同学参加学校组织的化学学科竞赛,其成绩的频率分布直方图如图所示,规定90分及其以上为获优胜奖.

(Ⅰ)下表是这次考试成绩的频数分布表,求正整数a, b的值;

区间
[75,80)
[80,85)
[85,90)
[90,95)
[95,100]
人数
40
a
280
240
b


(Ⅱ)现在要用分层抽样的方法从这800人中抽取5人参加某项活动,求其中获优胜奖的学生人数;
(Ⅲ)在(Ⅱ)中抽取的5名学生中,要随机选取2名学生参加市全省化学学科竞赛,求选取的两名学生中恰有含1名获优胜奖的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号