甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为
,乙获胜的概率为
,各局比赛结果相互独立.
(Ⅰ)求甲在局以内(含
局)赢得比赛的概率;
(Ⅱ)记为比赛决出胜负时的总局数,求
的分布列和数学期望.
设函数.
(I)求函数的单调递增区间;
(II) 若关于的方程
在区间
内恰有两个不同的实根,求实数
的取值范围.
已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)在△ABC中,角A,B,C所对的边分别是,若
且
,
试判断△ABC的形状.
省少年篮球队要从甲、乙两所体校选拔队员。现将这两所体校共20名学生的身高绘制成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”.
(Ⅰ)用分层抽样的方法从“高个子”和“非高个子”中抽取5人,如果从这5人中随机选2人,那么至少有一人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中随机选3名队员,用表示乙校中选出的“高个子”人数,试求出
的分布列和数学期望.
设,
.
(1)请写出的表达式(不需证明);
(2)求的极小值;
(3)设的最大值为
,
的最小值为
,求
的最小值.
已知函数.
(1)若函数为奇函数,求a的值;
(2)若函数在
处取得极大值,求实数a的值;
(3)若,求
在区间
上的最大值.