如图①,在平面直角坐标中,点A的坐标为(1,﹣2),点B的坐标为(3,﹣1),二次函数y=﹣x2的图象为l1.
(1)平移抛物线l1,使平移后的抛物线经过点A,但不过点B.
①满足此条件的函数解析式有 个.
②写出向下平移且经点A的解析式 .
(2)平移抛物线l1,使平移后的抛物线经过A,B两点,所得的抛物线l2,如图②,求抛物线l2的函数解析式及顶点C的坐标,并求△ABC的面积.
(3)在y轴上是否存在点P,使S△ABC=S△ABP?若存在,求出点P的坐标;若不存在,请说明理由.
求下式中的x:
(1);(2)
.
如图所示,在△ABC中,AC=8,BC=6,在△ABC中,DE为AB边上的高,DE=12,△ABE的面积为60,△ABC是否为直角三角形?说明理由.
如图,在四边形ABCD中,∠C=90°,AB=13,BC=4,CD=3,AD=12.
(1)AD⊥BD吗?为什么?
(2)求四边形ABCD的面积.
张老师在一次“探究性学习”课中,设计了如下数表:
n |
2 |
3 |
4 |
5 |
… |
a |
22-1 |
32-1 |
42-1 |
52-1 |
… |
b |
4 |
6 |
8 |
10 |
… |
c |
22+1 |
32+1 |
42+1 |
52+1 |
… |
(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:
a=_______,b= _______,c=_______;
(2)猜想:以a,b,c为边的三角形是否为直角三角形并证明你的猜想.
下列各数中,哪些是有理数?哪些是无理数?.