如图①,在平面直角坐标中,点A的坐标为(1,﹣2),点B的坐标为(3,﹣1),二次函数y=﹣x2的图象为l1.
(1)平移抛物线l1,使平移后的抛物线经过点A,但不过点B.
①满足此条件的函数解析式有 个.
②写出向下平移且经点A的解析式 .
(2)平移抛物线l1,使平移后的抛物线经过A,B两点,所得的抛物线l2,如图②,求抛物线l2的函数解析式及顶点C的坐标,并求△ABC的面积.
(3)在y轴上是否存在点P,使S△ABC=S△ABP?若存在,求出点P的坐标;若不存在,请说明理由.
如图,某种新型导弹从地面发射点L处发射,在初始竖直加速飞行阶段,导弹上升的高度y(km)与飞行时间x(s)之间的关系式为.发射3 s后,导弹到达A点,此时位于与L同一水平面的R处雷达站测得AR的距离是2 km,再过3s后,导弹到达B点.
(1)(4分)求发射点L与雷达站R之间的距离;
(2)(4分)当导弹到达B点时,求雷达站测得的仰角(即∠BRL)的正切值.
已知甲、乙两个班级各有50名学生.为了了解甲、乙两个班级学生解答选择题的能力状况,黄老师对某次考试中8道选择题的答题情况进行统计分析,得到统计表如下:
![]() |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
甲班 |
0 |
1 |
1 |
3 |
4 |
11 |
16 |
12 |
2 |
乙班 |
0 |
1 |
0 |
2 |
5 |
12 |
15 |
13 |
2 |
请根据以上信息解答下列问题:
(1)(2分)甲班学生答对的题数的众数是______;
(2)(2分)若答对的题数大于或等于7道的为优秀,则乙班该次考试中选择题答题的优秀率=______(优秀率=×100%).
(3)(4分)从甲、乙两班答题全对的学生中,随机抽取2人作选择题解题方法交流,则抽到的2人在同一个
班级的概率等于______.
如图,四边形ABCD是平行四边形,连接AC.
(1)(4分)请根据以下语句画图,并标上相应的字母(用黑色字迹的钢笔或签字笔画).
①过点A画AE⊥BC于点E;
②过点C画CF∥AE,交AD于点F;
(2)(4分)在完成(1)后的图形中(不再添加其它线段和字母),请你找出一对全等三角形,并予以证明.
已知三个一元一次不等式:,
,
,请从中选择你喜欢的两个不等式,组成一个不等式组,求出这个不等式组的解集,并把解集在数轴上表示出来.
(1)(2分)你组成的不等式组是
(2)(6分)解:
已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.
(1)求证:△ABE≌△BCF;
(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;
(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.