游客
题文

已知圆C1的参数方程为(φw为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=4sin(θ+).
(1)将圆C1的参数方程化为普通方程,将圆C2的极坐标方程化为直角坐标系方程;
(2)圆C1,C2是否相交?请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 参数方程
登录免费查看答案和解析
相关试题

已知a>0,函数f(x)=ax-bx2,
(1)当b>0时,若对任意x∈R都有f(x)≤1,证明:a≤2
(2)当b>1时,证明:对任意x∈[0, 1], |f(x)|≤1的充要条件是:b-1≤a≤2
(3)当0<b≤1时,讨论:对任意x∈[0, 1], |f(x)|≤1的充要条件。

设集合.若,求实数的取值范围.

轴同侧的两个圆:动圆和圆外切(),且动圆轴相切,求
(1)动圆的圆心轨迹方程L;
(2)若直线与曲线L有且仅有一个公共点,求之值。

已知抛物线,其焦点为F,一条过焦点F,倾斜角为的直线交抛物线于AB两点,连接AOO为坐标原点),交准线于点,连接BO,交准线于点,求四边形的面积.

给定圆P:及抛物线S:,过圆心作直线,此直线与上述两曲线的四个交点,自上而下顺次记为,如果线段的长按此顺序构成一个等差数列,求直线l的方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号