图1是由矩形 ADEB,Rt△ ABC和菱形 BFGC组成的一个平面图形,其中 AB=1, BE= BF=2,∠ FBC=60°,将其沿 AB, BC折起使得 BE与 BF重合,连结 DG,如图2.
(1)证明:图2中的 A, C, G, D四点共面,且平面 ABC⊥平面 BCGE;
(2)求图2中的二面角 B−CG−A的大小.
的内角的对边分别为
,已知
.
(1)求 ;
(2)若 为锐角三角形,且 ,求 面积的取值范围.
为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成 两组,每组100只,其中 组小鼠给服甲离子溶液, 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
记 为事件:"乙离子残留在体内的百分比不低于 ",根据直方图得到 的估计值为 .
(1)求乙离子残留百分比直方图中 的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
已知实数 ,设函数
(1)当 时,求函数 的单调区间;
(2)对任意 均有 求 的取值范围.
注: 为自然对数的底数.
如图,已知点 为抛物线 的焦点,过点 的直线交抛物线于 两点,点 在抛物线上,使得 的重心 在 轴上,直线 交 轴于点 ,且 在点 右侧.记 的面积为 .
(1)求 的值及抛物线的准线方程;
(2)求 的最小值及此时点 的坐标.