已知函数满足对任意实数
都有
成立,且当
时,
,
.
(1)求的值;
(2)判断在
上的单调性,并证明;
(3)若对于任意给定的正实数,总能找到一个正实数
,使得当
时,
,则称函数
在
处连续。试证明:
在
处连续.
已知函数,曲线
上点
处的切线方程为
.
(1)若在
时有极值,求
的表达式;
(2)在(1)的条件下求在
上的最值及相应的
的值.
已知函数.
(1)求函数的最小正周期;
(2)当时,求函数
的最大值和最小值.
对于任意的实数
恒成立,记实数M的最大值是m.
(Ⅰ)求m的值; (Ⅱ)解不等式.
在直角坐标系中,曲线
的参数方程为
(
为参数),若以该直角坐标系的原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为:
(其中
为常数).
(Ⅰ)若曲线与曲线
只有一个公共点,求
的取值范围;
(Ⅱ)当时,求曲线
上的点与曲线
上点的最小距离.
已知C点在圆O直径BE的延长线上,CA切圆O于A点, DC是∠ACB的平分线交AE于点F,交AB于D点.
(Ⅰ)求的度数.
(Ⅱ)若AB=AC,求AC:BC.