如图△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠GCA的平分线于点F.
(1)说明 EO=FO.
(2)当点O运动到何处,四边形AECF是矩形?说明你的结论.
(3)当点O运动到何处,AC与BC具有怎样的关系时,四边形AECF是正方形?为什么?
化简求值:
①简代数式,并从-1≤x≤2中选择一个你喜欢的整数代入,求出代数式的值;
②已知,求有理数A、B的值。
计算或解方程:①;②
.
某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2分钟内可以通过560名学生;当同时开启一个正门和一个侧门时,4分钟内可以通过800名学生.
(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?
(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5分钟内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.
如图,在△ABC中,∠ABC、∠ACB的平分线交于O点.
① 当∠A=300时,∠BOC=105°=;
② 当∠A=400时, ∠BOC=110°=
③ 当∠A=500时, ∠BOC=115°=
当∠A=n°(n为已知数)时,猜测∠BOC=,并用所学的三角形的有关知识说明理由.
小明和小方分别设计了一种求n边形的内角和(n-2)×180°(n为大于2的整数)的方案:
(1)小明是在n边形内取一点P,然后分别连结PA1、PA2、…、PAn(如图1);
(2)小红是在n边形的一边A1A2上任取一点P,然后分别连结PA4、PA5、…、PA1(如图2).
请你评判这两种方案是否可行?如果不行的话,请你说明理由;如果可行的话,请你沿着方案的设计思路把多边形的内角和求出来.