(1)在中,
分别是角
的对边,其中
是边
上的高,请同学们利用所学知识给出这个不等式:
≥
的证明.
(2)在中,
是边
上的高,已知
,并且该三角形的周长是
;
①求证:;
②求此三角形面积的最大值.
己知抛物线的顶点M到直线
(t为参数)的距离为1
(1)求m;
(2)若直线与抛物线相交于A,B两点,与y轴交于N点,求
的值.
(本小题满分10分)选修4-l:几何证明选讲如图,是
ABC的外接圆,D是
的中点,BD 交AC于E
(1)求证::
(2)若,O到AC的距离为1,求
的半径
已知函数(d为常数)
(1)当对,求
单调区间;
(2)若函数在区间(0,1)上无零点,求a的最大值.
己知曲线与x袖交于A,B两点,点P为x轴上方的一个动点,点P与A,B连线的斜率之积为-4
(1)求动点P的轨迹的方程;
(2)过点B的直线与
,
分别交于点M ,Q(均异于点A,B),若以MQ为直径的圆
经过点A,求AMQ的面积.
己知四棱锥P-ABCD,其中底面ABCD为矩形侧棱PA底面ABCD,其中BC=2,AB=2PA=6,
M,N为侧棱PC上的两个三等分点,如图所示:
(1)求证:AN∥平面MBD;
(2)求二面角B-PC-A的余弦值.