己知曲线与x袖交于A,B两点,点P为x轴上方的一个动点,点P与A,B连线的斜率之积为-4
(1)求动点P的轨迹的方程;
(2)过点B的直线与
,
分别交于点M ,Q(均异于点A,B),若以MQ为直径的圆
经过点A,求AMQ的面积.
(本小题12分)袋中有大小、形状相同的红、黑球各两个,现依次不放回地随机取3次,每次取一个球.
(1)试问:一共有多少种不同的结果,请列出所有可能的结果;
(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.
(本小题13分)已知向量,
(1)当∥
时,求
的值;
(2)求在
上的值域.
(本小题满分12分)
已知(其中
,
为实数).
(I)若在
处取得极值为2,求
、
的值;
(II)若在区间
上为减函数且
,求
的取值范围.
(本小题满分12分)
已知椭圆的左、右焦点分别为
、
,离
心率
,右准线方程为
.
(I)求椭圆的标准方程;
(II)过点的直线
与该椭圆交于M、N两点,且
,求直线
的方程.
(本小题满分12分)(文科做前两问;理科全做.)
某会议室用3盏灯照明,每盏灯各使用节能灯棍一只,且型号相同.假定每盏灯能否正常照明只与灯棍的寿命有关,该型号的灯棍寿命为1年以上的概率为0.8,寿命为2年以上的概率为0.3,从使用之日起每满1年进行一次灯棍更换工作,只更换已坏的灯棍,平时不换.
(I)在第一次灯棍更换工作中,求不需要更换灯棍的概率;
(II)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率;
(III)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.