分别指出下列各组命题构成的“p∧q”“p∨q”“¬p”形式的命题的真假.
(1)p:6<6.q:6=6;
(2)p:梯形的对角线相等.q:梯形的对角线互相平分;
(3)p:函数y=x2+x+2的图象与x轴没有公共点.q:不等式x2+x+2<0无解;
(4)p:函数y=cosx是周期函数.q:函数y=cosx是奇函数.
如图,圆O的半径OC垂直于直径AB,弦CD交半径 OA于E,过D的切线与BA的延长线交于M.
(1)求证:MD=ME;
(2)设圆O的半径为1,MD=
,求MA及CE的长.
如图,已知PE切⊙O于点E,割线PBA交⊙O于A,B两点,∠APE的平分线和AE,BE分别交于点C,D.
求证:(1)CE=DE;(2)
.
如图,AB是⊙O的直径,BE为⊙O的切线,点C为⊙O上不同于A,B的一点,AD为∠BAC的平分线,且分别与BC交于H,与⊙O交于D,与BE交于E,连接BD,CD.
(1)求证:BD平分∠CBE;
(2)求证:AH·BH=AE·HC.
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC=
,延长CE交AB于点F,求△BCF外接圆的半径.
如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:
(1)CD=BC;
(2)△BCD∽△GBD.