游客
题文

作图题:(5′+5′+5′,共15分)
(1)如图,已知∠AOB及点C、D两点,请利用直尺和圆规作一点P,使得点P到射线OA、OB的距离相等,且P点到点C、D的距离也相等。
(2)利用方格纸画出△ABC关于直线的对称图形△A′B′C′。
(3)如图,已知在△ABC中,AB="AC" ,AD是BC边上的高,P是AB边上的一点,试在高AD上找一点E,使得△PEB的周长最短。

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心 对称式和轮换对称式
登录免费查看答案和解析
相关试题

某校为了解七年级学生课外学习情况,随机抽取了部分学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如图所示的男生频数分布直方图:

根据图表解答下列问题:
(1)在女生的频数分布表中,m=,n=
(2)此次调查共抽取了多少名学生?
(3)从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?

如图,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20.

(1)求BC的长;
(2)求的值.

已知抛物线y=ax2经过点A(-2,4).
(1)求该抛物线的函数关系式;
(2)判断点B(-,-3)是否在此抛物线上;
(3)若图像上有两点M(x1,y1)、N(x2,y2),其中,则y1y2(在横线上填“<”“=”或“>”).

解方程:x2-3x+1=0.

如图,在平面直角坐标系中,二次函数)的图象经过点A(-1,0)、点B(3,0)、点C(0,3).

(1)求此抛物线的解析式及顶点D的坐标;
(2)连结AC、CD、BD,试比较∠BCA与∠BDC的大小,并说明理由;
(3)若在x轴上有一动点M,在抛物线上有一动点N,则M、N、B、C四点是否能构成平行四边形,若存在,请求出所有适合的点M的坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号