已知数列的前
项和为
,
.
(1)求数列的通项公式;
(2)设log2an+1 ,求数列
的前
项和
。
在平面直角坐标系中,若,且
.
(1)求动点的轨迹
的方程;
(2)已知定点,若斜率为
的直线
过点
并与轨迹
交于不同的两点
,且对于轨迹
上任意一点
,都存在
,使得
成立,试求出满足条件的实数
的值.
如图,椭圆经过点
,离心率
,直线
的方程为
.
(1)求椭圆的方程;
(2)是经过右焦点
的任一弦(不经过点
),设直线
与直线
相交于点
,记
的斜率分别为
.问:是否存在常数
,使得
?若存在,求
的值;若不存在,说明理由.
已知中心在原点的双曲线的右焦点为
,实轴长
.
(1)求双曲线的方程
(2)若直线与双曲线恒有两个不同的交点
,且
为锐角(其中
为原点),求
的取值范围.
是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.
(1)焦点在轴上的双曲线渐近线方程为
;
(2)点到双曲线上动点
的距离最小值为
.