如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.
(1)若最大拱高h为6米,则隧道设计的拱宽l是多少?
(2)若最大拱高h不小于6米,则应如何设计拱高h和拱宽l,才能使半个椭圆形隧道的土方工程量最最小?(半个椭圆的面积公式为,柱体体积为:底面积乘以高.本题结果精确到0.1米)
已知向量,且
(1)求的值
(2)求的值
函数.
(1)若,函数
在区间
上是单调递增函数,求实数
的取值范围;
(2)设,若对任意
恒成立,求
的取值范围.
某小区想利用一矩形空地建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中
,
,且
中,
,经测量得到
.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点
作一直线交
于
,从而得到五边形
的市民健身广场,设
.
(1)将五边形的面积
表示为
的函数;
(2)当为何值时,市民健身广场的面积最大?并求出最大面积.
已知,函数
.
⑴若不等式对任意
恒成立,求实数
的最值范围;
⑵若,且函数
的定义域和值域均为
,求实数
的值.
在数列中,
,
.
(1)设.证明:数列
是等差数列;
(2)求数列的前
项和
.