某种商品的成本为5元/ 件,开始按8元/件销售,销售量为50件,为了获得最大利润,商家先后采取了提价与降价两种措施进行试销。经试销发现:日销售量Q(件)与实际销售价x(元)满足关系:
(1)求总利润(利润=销售额-成本)y(元)与销售价x(件)的函数关系式;
(2)试问:当实际销售价为多少元时,总利润最大.
已知函数,
(1)求的极值
(2)若在
上恒成立,求
的取值范围
(3)已知,
且
,求证
已知函数是奇函数,并且函数
的图象经过点(1,3).
(1)求实数的值;
(2)求函数的值域.
已知f(x)是实数集R上的函数,且对任意xR,f(x)=f(x+1)+f(x-1)恒成立.
(1)求证:f(x)是周期函数.
(2)已知f(-4)=2,求f(2012).
盒子内有大小相同的9个球,其中2个红色小球,3个白色小球,4个黑色小球,规定取出1红色小球得到1分, 取出1白色小球得到0分, 取出1个黑色小球得到-1分,现从盒子中任取3个小球。
(1)求取出的3个球颜色互不相同的概率;
(2)求取出的3个球得分之和恰好为1分的概率;
(3)设ξ为取出的3个球中白色球的个数,求ξ的分布列及数学期望.
已知等比数列中,
为前
项和且
,
,
(1)求数列的通项公式。
(2)设,求
的前
项和
的值。