已知椭圆:
的长轴长是短轴长的
倍,
,
是左,右焦点.
(1)若,且
,
,求
、
的坐标;
(2)在(1)的条件下,过动点作以
为圆心、以1为半径的圆的切线
(
是切点),且使
,求动点
的轨迹方程
本题满分14分)
为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2.
表1:男生身高频数分布表
表2:女生身高频数分布表
(1)求该校男生的人数并完成下面频率分布直方图;
(2)估计该校学生身高(单位:cm)在的概率;
(3)在男生样本中,从身高(单位:cm)在的男生中任选3人,设
表示所选3人中身高(单位:cm)在
的人数,求
的分布列和数学期望.
已知函数,
.
(1)求函数的最大值和最小值;
(2)设函数在
上的图象与
轴的交点从左到右分别为M、N,图象的最高点为P,求
与
的夹角的余弦
(本小题共14分)
如图,四棱锥的底面是正方形,
,点E在棱PB上.
(Ⅰ)求证:平面;
(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.
(本小题共13分)直线和
轴,
轴分别交于点
,以线段
为边在第一象限内作等边△
,如果在第一象限内有一点
使得△
和△
的面积相等, 求
的值。