抛物线上部分点的横坐标x,纵坐标y的对应值如下表:
x |
… |
-2 |
-1 |
0 |
1 |
2 |
… |
y |
… |
0 |
-4 |
-4 |
0 |
8 |
… |
(1)根据上表填空:
①抛物线与x轴的交点坐标是 和 ;
②抛物线经过点(-3, );
③在对称轴右侧,y随x增大而 ;
(2)试确定抛物线的解析式.
已知方程组的解都是负数,化简
。
某实验中学为初二住宿的男学生安排宿舍。如果每间住4人,那么有20人无法安排;如果每间住8人,那么有一间宿舍不空也不满。求宿舍间数和住宿男学生人数。
解方程:
(1)分解因式:并把解集表示在数轴上。
(3)计算:
在研究勾股定理时,同学们都见到过图1,∠,四边形
、
、
都是正方形.
⑴连结、
得到图2,则△
≌△
,此时两个三角形全等的判定依据是
▲;过作
⊥
于
,交
于
,则
△
;同理
△
,得
,然后可证得勾股定理.
⑵在图1中,若将三个正方形“退化”为正三角形,得到图3,同学们可以探究△、△
、△
的面积关系是▲.
⑶为了研究问题的需要,将图1中的△
也进行“退化”为锐角△
,并擦去正方形
得图4,由
两边向三角形外作正△
、正△
,△
的外接圆与
交于点
,此时
、
、
共线,从△
内一点到
、
、
三个顶点的距离之和最小的点恰为点
(已经被他人证明).设
=3,
=4,
.求
的值.