在平面直角坐标系xOy中,抛物线经过点A(0,-2),B(3,4).
(1)求抛物线的表达式及对称轴;
(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图像G(包含A,B两点).若直线CD与图像G有公共点,结合函数图像,求点D纵坐标t 的取值范围.
【初始问题】如图1,已知两个同心圆,直线AD分别交大⊙O于点A、D,交小⊙O于点B、C.AB与CD相等吗?请证明你的结论.
【类比研究】如图2,若两个等边三角形ABC和A1 B1 C1的中心(点O)相同,且满足AB∥A1B1,BC∥B1C1,AC∥A1C1,可知AB与A1B1,BC与B1C1,AC与A1C1之间的距离相等.直线MQ分别交三角形的边于点M、N、P、Q,与AB所成夹角为∠α(30°<∠α<90°).(1)求
(用含∠α的式子表示);
(2)求∠α等于多少度时,MN = PQ.
某大学校园内一商店,销售一种进价为每件20元的台灯.销售过程中发现,每月销售量(件)与销售单价
(元)之间的关系可近似的看作一次函数:
.
(1)设此商店每月获得利润为
(元),当销售单价定为多少元时,每月可获得最大利润?【利
润=(销售单价-进价)×销售量】
(2)如果此商店想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种台灯的销售单价不得高于32元,如果此商店想要每月获得的利润不低于2000元,那么商店每月的成本最少需要多少元?【成本=进价×销售量】
已知正方形纸片ABCD.如图1,将正方形纸片折叠,使顶点A落在边CD上的点P处(点P与C、D不重合),折痕为EF,折叠后AB边落在PQ的位置,PQ与BC交于点G.(1)请你找到一个与
相似的三角形,并证明你的结论;
(2)当AB=2,点P位于CD中点时,请借助图2画出折叠后的示意图,并求CG的长.
如图,已知AB是⊙O的直径,点H在⊙O上,E是的中点,过点E作EC⊥AH,交AH的延长线于点C.连结AE,过点E作EF⊥AB于点F.(1)求证:CE是⊙O的切线;
(2)若FB=2, tan∠CAE=
,求OF的长.
如图,平行四边形ABCD中,E是BC的中点.请你在线段AB上截取BF=2AF,连结EF交BD于点G,求的值.