(本小题满分12分)我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.如图,“盾圆”是由椭圆与抛物线中两段曲线合成,为椭圆左、右焦点,,为椭圆与抛物线的一个公共点,.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在过的一条直线,与“盾圆”依次交于四点,使得与的面积之比为,若存在,求出直线的方程;若不存在,说明理由.
已知平面内三点、、三点在一条直线上,,,,且,求实数,的值.
已知,,其中. (1)求;(2)求的值.
已知函数 (1)若对任意的恒成立,求实数的最小值. (2)若且关于的方程在上恰有两个不相等的实数根,求实数的取值范围; (3)设各项为正的数列满足:求证:
已知向量=,变换T的矩阵为A=,平面上的点P(1,1)在变换T作用下得到点P′(3,3),求A-1.
观察数表 1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 求:(1)这个表的第行里的最后一个数字是多少? (2)第行各数字之和是多少?
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号