已知向量=
,变换T的矩阵为A=
,平面上的点P(1,1)在变换T作用下得到点P′(3,3),求A-1
.
已知函数,在点
处的切线方程为
.
(I)求函数的解析式;
(II)若对于区间上任意两个自变量的值
,都有
,求实数
的最小值;
(III)若过点,可作曲线
的三条切线,求实数
的取值范围.
已知一企业生产某产品的年固定成本为10万元,每生产千件需另投入2.7万元,设该企业年内共生产此种产品千件,并且全部销售完,每千件的销售收入为
万元,且
(1)写出年利润(万元)关于年产品
(千件)的函数解析式;
(2)年产量为多少千件时,该企业生产此产品所获年利润最大?(注:年利润=年销售收入-年总成本)
对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这
名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(Ⅰ)求出表中及图中
的值;
(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.
已知数列的前n项和
(其中c,k为常数),且
2=4,
6=8
3
(Ⅰ)求;
(Ⅱ)求数列的前n项和Tn.
中,
分别为角
的对边,满足
.
(Ⅰ)求角的值;
(Ⅱ)若,设角
的大小为
的周长为
,求
的最大值.