数列{ a n}满足a 1+2 a 2+22 a 3+…+2n-1 a n=,(n∈N*)前n项和为Sn;数列{bn}是等差数列,且b1=2,其前n项和Tn满足
(
为常数,且
<1).
(1)求数列{ a n}的通项公式及的值;
(2)设,求数列
的前n项的和
;
(3)证明+
+
+ +
>
Sn.
如图,在四棱锥PABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.
(1)当正视方向与向量的方向相同时,画出四棱锥P
ABCD的正视图(要求标出尺寸,并写出演算过程);
(2)若M为PA的中点,求证:DM∥平面PBC;
(3)求三棱锥DPBC的体积.
如图,ABEDFC为多面体,平面ABED与平面ACFD垂直,点O在线段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.
(1)证明直线BC∥EF;
(2)求棱锥FOBED的体积.
如图,在侧棱垂直底面的四棱柱ABCDA1B1C1D1中,AD∥BC,AD⊥AB,AB=
,AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.
(1)证明:①EF∥A1D1;②BA1⊥平面B1C1EF.
(2)求BC1与平面B1C1EF所成的角的正弦值.
如图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.
(1)若CD=2,平面ABCD⊥平面DCEF,求MN的长;
(2)用反证法证明:直线ME与BN是两条异面直线.
正实数数列{an}中,a1=1,a2=5,且{}成等差数列.
(1)证明:数列{an}中有无穷多项为无理数;
(2)当n为何值时,an为整数?并求出使an<200的所有整数项的和.