(本题10分)已知:等腰三角形的周长为80.
(1)写出底边长y与腰长x的函数表达式;
(2)当腰长为30时,底边长为多少?
(3)当底边长为8时,腰长为多少?
解方程:
计算
(1)
(2),其中a满足
如图1所示,将一个边长为2的正方形和一个长为2、宽为1的长方形
拼在一起,构成一个大的长方形
.现将小长方形
绕点
顺时针旋转至
,旋转角为
.
(1)当点恰好落在
边上时,求旋转角
的值;
(2)如图2,为
的中点,且0°<
<90°,求证:
;
(3)先将小长方形绕点
顺时针旋转,使
与
全等(0°<
<180°),再将此时的小长方形
沿CD边竖直向上平移t个单位,设移动后小长方形边直线
与BC交于点H,若DH∥FC,求上述运动变换过程中
和t的值.
函数和
的图象关于y轴对称,我们定义函数
和
相互为“影像”函数。
类似地,如果函数和
的图象关于y轴对称,那么我们定义函数
和
互为“影像”函数。
(1)请写出函数的“影像”函数:;
(2)函数的“影像”函数是;
(3)如果,一条直线与一对“影像”函数和
的图象分别交于点A、B、C(点A、B在第一象限),如果CB: BA=1:2,点C在函数
的“影像”函数上的对应点的横坐标是1,求点B的坐标。
如图①,②,在平面直角坐标系中,点
的坐标为(4,0),以点
为圆心,4为半径的圆与
轴交于
,
两点,
为弦,
,
是
轴上的一动点,连结
。
(1)的度数为;
(2)如图①,当与⊙A相切时,求
的长;
(3)如图②,当点在直径
上时,
的延长线与⊙A相交于点
,问
为何值时,
是等腰三角形?