如图四棱锥S﹣ABCD中,SD⊥AD,SD⊥CD,E是SC的中点,O是底面正方形ABCD的中心,AB=SD=6.
(1)求证:EO∥平面SAD;
(2)求直线EO与平面SCD所成的角.
已知函数,
,直线
与曲线
切于点
且与曲线
切于点
.
(1)求a,b的值和直线的方程;
(2)证明:.
已知数列满足
,
.
(1)求证:数列是等差数列;
(2)设,数列
的前
项之和为
,求
的最小值.
已知直线,一个圆的圆心
在
轴正半轴上,且该圆与直线
和
轴均相切.
(1)求该圆的方程;
(2)直线与圆
交于
两点,且
是等边三角形,求
的值.
2010年上海世博会某国要建一座八边形(不一定为正八边形)的展馆区(如图),它的主体造型的平面图是由二个相同的矩形和
构成的面积为
m2的十字型地域,计划在正方形
上建一座“观景花坛”,造价为
元/m2,在四个矩形上(图中阴影部分)铺花岗岩地坪,造价为
元/m2,再在四个空角(如
等)上铺草坪,造价为
元/m2.设总造价为
元,
长为
m.
(1)试建立与
的函数关系
(2)当为何值时,
最小?并求这个最小值
如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1;
(2)求证:AC1∥平面CDB1;
(3)求三棱锥的体积.