某市为准备参加省中学生运动会,对本市甲、乙两个田径队的所有跳高运动员进行了测试,用茎叶图表示出甲、乙两队运动员本次测试的跳高成绩(单位:cm,且均为整数),同时对全体运动员的成绩绘制了频率分布直方图.跳高成绩在185cm以上(包括185cm)定义为“优秀”,由于某些原因,茎叶图中乙队的部分数据丢失,但已知所有运动员中成绩在190cm以上(包括190cm)的只有两个人,且均在甲队.
(Ⅰ)求甲、乙两队运动员的总人数a及乙队中成绩在[160,170)(单位:cm)内的运动员人数b;
(Ⅱ)在甲、乙两队所有成绩在180cm以上的运动员中随机选取2人,已知至少有1人成绩为“优秀”,求两人成绩均“优秀”的概率;
(Ⅲ)在甲、乙两队中所有的成绩为“优秀”的运动员中随机选取2人参加省中学生运动会正式比赛,求所选取运动员中来自甲队的人数X的分布列及期望.
一个包装箱内有5件产品,其中3件正品,2件次品。现随机抽出两件产品,
(1)求恰好有一件次品的概率。
(2)求都是正品的概率。
(3)求抽到次品的概率。
已知椭圆上一点
到它的左右两个焦点的距离和是6,
(1)求及椭圆离心率的值.
(2)若轴(
为右焦点),且
在
轴上的射影为点
,求点
的坐标.
、(本小题满分14 分)已知:数列是递增的等比数列,且
,
(1)求数列的通项公式;
(2)若,求证数列
是等差数列;
(3)求数列前
项和为
(本小题满分14 分)已知:抛物线C的顶点在原点,焦点在x轴上,且抛物线上有一点(4,
)到焦点的距离为5.
(1)求抛物线C的方程;
(2)若抛物线C与直线相交于不同的两点A、B,求:
.
、(本小题满分14 分)已知命题:关于
的不等式
的解集为空集
;命题
:函数
为增函数,若命题
为假命题,
为真命题,求实数
的取值范围。