已知矩阵M=的两个特征值分别为λ1=﹣1和λ2=4.
(1)求实数a,b的值;
(2)求直线x﹣2y﹣3=0在矩阵M所对应的线性变换作用下的象的方程.
(本小题满分13分)
已知首项不为零的数列的前
项和为
,若对任意的
,
,都有
.
(Ⅰ)判断数列是否为等差数列,并证明你的结论;
(Ⅱ)若数列的第
项
是数列
的第
项
,且
,
,求数列
的前
项和
.
(本小题满分13分)
在一条笔直的工艺流水线上有个工作台,将工艺流水线用如图
所示的数轴表示,各工作台的坐标分别为
,
,
,每个工作台上有若干名工人.现要在
与
之间修建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短.
(Ⅰ)若每个工作台上只有一名工人,试确定供应站的位置;
(Ⅱ)设工作台从左到右的人数依次为,
,
,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.
图5
(本小题满分12分)
如图,
是圆
的的直径,点
是弧
的中点,
,
分别是
,
的中点,
平面.
(Ⅰ)求异面直线与
所成的角;
(Ⅱ)证明 平面
.
(本小题满分12分)
甲,乙两人进行射击比赛,每人射击次,他们命中的环数如下表:
甲 |
5 |
8 |
7 |
9 |
10 |
6 |
乙 |
6 |
7 |
4 |
10 |
9 |
9 |
(Ⅰ)根据上表中的数据,判断甲,乙两人谁发挥较稳定;
(Ⅱ)把甲6次射击命中的环数看成一个总体,用简单随机抽样方法从中抽取两次命中的环数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过的概率.
(本小题满分12分)
在中,角
,
,
所对的边分别为
,
,
,向量
,
,且
.
(Ⅰ)求角的大小;
(Ⅱ)若,
,求
的值.