游客
题文

2014年国庆长假期间,各旅游景区人数发生“井喷”现象,给旅游区的管理提出了严峻的考验,国庆后,某旅游区管理部门对该区景点进一步改造升级,提高旅游增加值,经过市场调查,旅游增加值y万元与投入x万元之间满足:,当x=10时,y=9.2.
(1)求y=f(x)的解析式;
(2)求旅游增加值y取得最大值时对应的x值.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

(22、23、24三题中任选一题作答,如果多做,则按所做的的第一题记分)
(本小题满分10分)选修4—4:坐标系与参数方程已知直线的参数方程为为参数),曲线C的极坐标方程是,以极点为原点,极轴为轴正方向建立直角坐标系,点,直线与曲线C交于A、B两点.
(1)写出直线的极坐标方程与曲线C的普通方程;
(2) 线段MA,MB长度分别记为|MA|,|MB|,求的值.

(22、23、24三题中任选一题作答,如果多做,则按所做的的第一题记分)(本小题满分10分)选修4—1:几何证明选讲
如图,是⊙的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.

求证:(1)
(2)

(本小题满分12分)己知函数
(1)求函数的单调区间;
(2)当时,证明:对时,不等式成立;
(3)当时,证明:

(本小题满分12分)已知抛物线为正常数)的焦点为,过做一直线交抛物线两点,点为坐标原点.
(1)若的面积记为,求的值;
(2)若直线垂直于轴,过点P做关于直线对称的两条直线分别交抛物线C于M,N两点,证明:直线MN斜率等于抛物线在点Q处的切线斜率.

(本小题满分12分)
己知三棱在底面ABC上的射影恰为AC的中点D,,又知

(1)求证:平面
(2)求点C到平面的距离;
(3)求二面角余弦值的大小.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号