某校高三年级有男学生105人,女学生126人,教师42人,用分层抽样的方法从中抽取13人进行问卷调查,设其中某项问题的选择,分别为“同意”、“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答卷情况的部分信息.
|
同意 |
不同意 |
合计 |
教师 |
1 |
|
|
女学生 |
|
4 |
|
男学生 |
|
2 |
|
(1)完成此统计表;
(2)估计高三年级学生“同意”的人数;
(3)从被调查的女学生中选取2人进行访谈,求选到两名学生中恰有一人“同意”,一人“不同意”的概率.
以直角坐标系的原点O为极点,轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,
),若直线
过点P,且倾斜角为
,圆C以M为圆心,4为半径。
(I)求直线的参数方程和圆C的极坐标方程;
(II)试判定直线与圆C的位置关系。
如图AB为圆O直径,P为圆O外一点,过P点作PC⊥AB,
垂是为C,PC交圆O于D点,PA交圆O于E点,BE交PC于F点。
(I)求证:∠PFE=∠PAB;
(II)求证:CD2=CF·CP.
已知函数
(Ⅰ)当时, 求函数
的单调增区间;
(Ⅱ)求函数在区间
上的最小值;
(Ⅲ) 在(Ⅰ)的条件下,设,
证明:.参考数据:
.
平面内与两定点连线的斜率之积等于非零常数
的点的轨迹,加上
两点,所成的曲线
可以是圆,椭圆或双曲线.
(Ⅰ)求曲线的方程,并讨论
的形状与
值的关系;
(Ⅱ)当时,对应的曲线为
;对给定的
,对应的曲线为
,若曲线
的斜率为
的切线与曲线
相交于
两点,且
(
为坐标原点),求曲线
的方程.
如图,四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD,
PA=BC=1,PD=AB=,E、F分别为线段PD和BC的中点.
(Ⅰ) 求证:CE∥平面PAF;
(Ⅱ)在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.