如图,在破残的圆形残片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=8cm,CD=2cm.(本小题满分8分)
(1)求作此残片所在的圆(尺规作图,不写作法,保留作图痕迹);
(2)求出(1)中所作圆的半径.
在下面的方格纸中,用三角尺分别画出:①过点A作MN的平行线;
②过点P作PQ的垂线。
化简求值:,其中
计算与化简:(1)
(2)20122-2011×2013
(3)
如图,抛物线y=-x2+mx+n与x轴分别交于点A(4,0),B(-2,0),与y轴交于点C.
(1)求该抛物线的解析式;
(2)M为第一象限内抛物线上一动点,点M在何处时,△ACM的面积最大;
(3)在抛物线的对称轴上是否存在这样的点P,使得△PAC为直角三角形?若存在,请求出所有可能点P的坐标;若不存在,请说明理由.
如图,平面直角坐标系中,直线y=-x+8分别交x轴、y轴于点B、点A,点D从点A出发沿射线AB方向以每秒1个单位长的速度匀速运动,同时点E从点B出发沿射线BC方向以每秒
个单位长的速度匀速运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥AO于点F,连接DE、EF.
(1)当t为何值时,△BDE与△BAO相似;
(2)写出以点D、F、E、O为顶点的四边形面积s与运动时间t之间的函数关系;
(3)是否存在这样一个时刻,此时以点D、F、E、B为顶点的四边形是菱形,如果存在,求出相应的t的值;如果不存在,请说明理由.