Rt△ABC中,AB=AC=2,∠A=90°,D为BC中点,点E,F分别在AB,AC上,且BE=AF,
(1)求证:ED=FD,
(2)求证:DF⊥DE,
(3)求四边形AFDE的面积.
某校抽样调查了部分初三学生的升学意向,调查结果有三种情况:A.考上三星级高中;B.考取四星级高中;C.进入职业技术学校.教务处将调查数据进行了整理,绘制了如下不完整的统计图.请根据相关信息,
解答下列问题:
(1)本次活动共调查了学生名;
(2)求出图②中B区域圆心角的度数;
(3)若该校初三学生共有600名,请用样本估计该校学生中目标“考取四星级高中”的人数.
(1)解方程:(1)x2-6x+8="0" ;(2)解不等式组:;
(1); (2)(x+2)2+x(2﹣x);
(本小题满分12分)已知抛物线经过点A(-3,0),B(1,0)和点C(0,-3).
(1)求抛物线的解析式;
(2)如图,若抛物线的顶点为P,连接PC并延长与x轴相交于点M,x轴上另一点N,若,求点N的坐标;
(3)在上述条件下,在抛物线或坐标轴上是否存在点G,使△GMC与△OPC相似?若存在,求点G的坐标;若不存在,请说明理由.
(本小题满分10分)如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.
(1)求证:PD是⊙O的切线;
(2)若BD=BP=,求图中曲边三角形(阴影部分)的周长;
(3)如图2,点M是的中点,连接DM,交AB于点N,若tan∠A=
,求
的值.