如图,一次函数的图象分别交
轴、
轴于
两点,
为
的中点,
轴于点
,延长
交反比例函数
的图象于点
,且
(1)求的值;
(2)连结求证:四边形
是菱形.
如图,,
,
,
.
(1)求
的长;
(2)求
的值.
如图,是⊙O的直径,弦BC=5,∠BOC=60°,OE⊥AC,垂足为E.
(1)求OE的长;
(2)求劣弧AC的长.
已知二次函数的图象与x 轴交于(2,0)、(4,0),顶点到x 轴的距离为3,求函数的解析式。
以直线为对称轴的抛物线过点(3,0),(0,3),求此抛物线的解析式.
已知抛物线。
<1>求抛物线顶点M的坐标;
<2>若抛物线与x轴的交点分别为点A、B(点A在点B的左边),与y轴交于点C,点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
<3>在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.