(本小题满分12分)已知函数R).(1)求的单调递增区间;(2)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知,b,a,c成等差数列,且,求a的值.
在中,角所对的边分别为,且满足.求角的大小;求的最大值,并求取得最大值时角的大小.
已知向量,,其中为坐标原点. (Ⅰ)若且,求向量与的夹角; (Ⅱ)若不等式对任意实数都成立,求实数的取值范围.
在△中,角A、B、C所对的边分别是 a,b,c且a="2," (Ⅰ)b="3," 求的值. (Ⅱ)若△的面积=3,求b,c的值.
已知函数为实常数). (I)当时,求函数在上的最小值; (Ⅱ)若方程在区间上有解,求实数的取值范围; (Ⅲ)证明: (参考数据:)
设 (1)请写出的表达式(不需证明); (2)求的极值 (3)设的最大值为,的最小值为,求的最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号