如图,椭圆 (
)的离心率
,短轴的两个端点分别为B1、B2,焦点为F1、F2,四边形F1 B1F2 B2的内切圆半径为
(1)求椭圆C的方程;
(2)过左焦点F1的直线交椭圆于M、N两点,交直线于点P,设
,
,试证
为定值,并求出此定值.
如图,在几何体中,四边形
均为边长为1的正方形.
(1)求证:.
(2)求该几何体的体积.
已知函数
(1)求函数的最小正周期和对称轴方程;
(2)将的图像左移
个单位,再向上移1个单位得到
的图像,试求
在区间
的值域.
已知、
、c为正数,
(1)若直线2x-(b-3)y+6=0与直线bx+ay-5=0互相垂直,试求的最小值;
(2)求证:.
已知曲线的参数方程是
,直线
的参数方程为
,
(1)求曲线与直线
的普通方程;
(2)若直线与曲线
相交于
两点,且
,求实数
的值。
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(1)证明:CD∥AB;
(2)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.